KIT | KIT-Bibliothek | Impressum | Datenschutz

Potential of systematically generated training datasets on the accuracy and generalization of AI-based approaches for the automated identification of machine control signals

Gönnheimer, Philipp 1; Ströbel, Robin ORCID iD icon 1; Roßkopf, Alexander 1,2; Dörflinger, Roman 1; Walter, Iris ORCID iD icon 2; Becker, Jürgen 2; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)
2 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

The automated identification of data sources in machine tools is steadily gaining importance due to the growing use of data-driven methods. However, due to small size and volatile information content of training data sets, even promising AI approaches are increasingly reaching their limits. With systematically generated unique reference trajectories, large-scale data sets with high information content can be created. In this paper, the effects of these data sets on accuracy and generalization of AI-based approaches are investigated in comparison to the training with process data. In particular, the subset optimizing the identification of real-world process data is addressed.


Verlagsausgabe §
DOI: 10.5445/IR/1000163540
Veröffentlicht am 27.10.2023
Originalveröffentlichung
DOI: 10.1016/j.procir.2023.06.026
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000163540
Erschienen in 16th CIRP Conference on Intelligent Computation in Manufacturing Engineering CIRP ICME ‘22, Italy. Hrsg.: R. Teti, D. D'Addona
Veranstaltung 16th Conference on Intelligent Computation in Manufacturing Engineering (CIRP ICME 2022), Online, 13.07.2022 – 15.07.2022
Verlag Elsevier
Seiten 145 – 150
Serie Procedia CIRP ; 118
Schlagwörter Artificial intelligence, Automation, Computer numerical control (CNC), Digital manufacturing system, Identification, Machine tool
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page