KIT | KIT-Bibliothek | Impressum | Datenschutz

MOFGalaxyNet: a social network analysis for predicting guest accessibility in metal–organic frameworks utilizing graph convolutional networks

Jalali, Mehrdad ORCID iD icon 1,2; Wonanke, A. D. Dinga 1; Wöll, Christof 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Metal–organic frameworks (MOFs), are porous crystalline structures comprising of metal ions or clusters intricately linked with organic entities, displaying topological diversity and effortless chemical flexibility. These characteristics render them apt for multifarious applications such as adsorption, separation, sensing, and catalysis. Predominantly, the distinctive properties and prospective utility of MOFs are discerned post-manufacture or extrapolation from theoretically conceived models. For empirical researchers unfamiliar with hypothetical structure development, the meticulous crystal engineering of a high-performance MOF for a targeted application via a bottom-up approach resembles a gamble. For example, the precise pore limiting diameter (PLD), which determines the guest accessibility of any MOF cannot be easily inferred with mere knowledge of the metal ion and organic ligand. This limitation in bottom-up conceptual understanding of specific properties of the resultant MOF may contribute to the cautious industrial-scale adoption of MOFs.
Consequently, in this study, we take a step towards circumventing this limitation by designing a new tool that predicts the guest accessibility—a MOF key performance indicator—of any given MOF from information on only the organic linkers and the metal ions. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000163717
Veröffentlicht am 02.11.2023
Originalveröffentlichung
DOI: 10.1186/s13321-023-00764-2
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 1758-2946
KITopen-ID: 1000163717
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Journal of Cheminformatics
Verlag SpringerOpen
Band 15
Heft 1
Seiten 94
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 11.10.2023
Schlagwörter Metal–Organic Frameworks (MOF), Social networking, Machine learning, Materials properties, Guest accessibility, MOFGalaxyNet, Graph convolutional network (GCN)
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page