KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploring the Use of European Weather Regimes for Improving User-Relevant Hydrological Forecasts at the Subseasonal Scale in Switzerland

Chang, Annie Y.-Y.; Bogner, Konrad; Grams, Christian M. 1; Monhart, Samuel; Domeisen, Daniela I. V.; Zappa, Massimiliano
1 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)

Abstract:

Across the globe, there has been an increasing interest in improving the predictability of subseasonal hydrometeorological forecasts, as they play a valuable role in medium- to long-term planning in many sectors, such as agriculture, navigation, hydropower, and emergency management. However, these forecasts still have very limited skill at the monthly time scale; hence, this study explores the possibilities for improving forecasts through different pre- and postprocessing techniques at the interface with a Precipitationn–Runoff–Evapotranspiration Hydrological Response Unit Model (PREVAH). Specifically, this research aims to assess the benefit of European weather regime (WR) data within a hybrid forecasting setup, a combination of a traditional hydrological model and a machine learning (ML) algorithm, to improve the performance of subseasonal hydrometeorological forecasts in Switzerland. The WR data contain information about the large-scale atmospheric circulation in the North Atlantic–European region, and thus allow the hydrological model to exploit potential flow-dependent predictability. Four hydrological variables are investigated: total runoff, baseflow, soil moisture, and snowmelt. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000163785
Veröffentlicht am 08.11.2023
Originalveröffentlichung
DOI: 10.1175/JHM-D-21-0245.1
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.10.2023
Sprache Englisch
Identifikator ISSN: 1525-755X, 1525-7541
KITopen-ID: 1000163785
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Journal of Hydrometeorology
Verlag American Meteorological Society
Band 24
Heft 10
Seiten 1597–1617
Vorab online veröffentlicht am 27.09.2023
Schlagwörter Climate classification/regimes, Hydrology, Operational forecasting, Machine learning, Ensembles
Nachgewiesen in Scopus
Web of Science
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page