KIT | KIT-Bibliothek | Impressum | Datenschutz

A novel multiscale process simulation to predict the impact of intrinsic heat treatment on local microstructure gradients and bulk hardness of AISI 4140 manufactured by laser powder bed fusion

Schüßler, Philipp 1; Nouri, Niki ORCID iD icon 1; Schulze, Volker 1; Dietrich, Stefan ORCID iD icon 1
1 Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK), Karlsruher Institut für Technologie (KIT)

Abstract:

Although finite element model based process simulations for the laser powder bed fusion additive manufacturing process have become more common in the recent years, the proposed approaches are often only viable for materials without complex phase transformations. Process simulations for materials such as the quench and tempering steel AISI 4140 typically lead to higher computational cost due to the finer mesh and time steps needed for more complex material models. This study proposes a novel multiscale approach to combine the advantages of the macroscale and mesoscale models into one framework, in order to reduce computational cost while retaining the high accuracy. The implementation of these multiscale methods was validated by experimentally analyzing multiple parameter combinations regarding bulk hardness and local microstructure differences. The results show an accurate prediction of bulk hardness and localised tempering effects while reducing the computational cost in order to simulate the component scale.


Verlagsausgabe §
DOI: 10.5445/IR/1000164333
Veröffentlicht am 14.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Werkstoffkunde (IAM-WK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 1745-2759, 1745-2767
KITopen-ID: 1000164333
Erschienen in Virtual and Physical Prototyping
Verlag Taylor and Francis
Band 18
Heft 1
Seiten Art.-Nr.: e2271455
Vorab online veröffentlicht am 31.10.2023
Schlagwörter Laser powder bed fusion, additive manufacturing, quench and tempering steel, multiscalefinite element simulation, hardness
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page