KIT | KIT-Bibliothek | Impressum | Datenschutz

Towards Temporal Information Processing – Printed Neuromorphic Circuits with Learnable Filters

Zhao, Haibin ORCID iD icon 1,2; Pal, Priyanjana ORCID iD icon 2,3; Hefenbrock, Michael; Beigl, Michael 1,2; Tahoori, Mehdi B. 2,3
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Fakultät für Informatik (INFORMATIK), Karlsruher Institut für Technologie (KIT)
3 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With the progression of Internet of Things, many novel consumer products such as wearable devices and disposable electronics requires flexibility, biocompatibility and ultra low-costs. However, these features can hardly be matched by traditional silicon-based electronics. In this regard, printed electronics becomes one of the most competitive candidate by offering the aforementioned properties thanks to its additive manufacturing process. To address fundamental signal-processing tasks, printed neuromorphic circuits, emulating the artificial neural networks, have received increasing attention, as they can achieve appealing computational capabilities by assembling simple elemental circuit primitives. However, many target applications for printed electronics are based on processing temporal sensory data, which is beyond the reach of existing printed neuromorphic circuits, since they lack components with time dependencies. To this end, this paper proposes a novel printed temporal processing block that combines existing circuit primitives with a sequence of learnable low-pass filters. We model the proposed circuit and proposed the corresponding training objective to enable the bespoke design of the circuits. ... mehr


Postprint §
DOI: 10.5445/IR/1000164433
Veröffentlicht am 30.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 20.12.2023
Sprache Englisch
Identifikator KITopen-ID: 1000164433
Erschienen in 18th ACM International Symposium on Nanoscale Architectures (NANOARCH 2023), Dresden, 18.12 - 20.12.2023)
Veranstaltung 18th ACM International Sympsium on Nanoscale Architectures (NANOARCH 2023), Dresden, Deutschland, 18.12.2023 – 20.12.2023
Verlag Association for Computing Machinery (ACM)
Schlagwörter printed electronics, neuromorphic computing, temporal information processing, recurrent neural network
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page