KIT | KIT-Bibliothek | Impressum | Datenschutz

AnnRG - An artificial neural network solute geothermometer

Ystroem, Lars H. ORCID iD icon 1; Vollmer, Mark 1; Kohl, Thomas 1; Nitschke, Fabian 1
1 Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)

Abstract:

Solute artificial neural network geothermometers offer the possibility to overcome the complexity given by the solute-mineral composition. Herein, we present a new concept, trained from high-quality hydrochemical data and verified by in-situ temperature measurements with a total of 208 data pairs of geochemical input parameters (Na+, K+, Ca2+, Mg2+, Cl−, SiO2, and pH) and reservoir temperature measurements being compiled. The data comprises nine geothermal sites with a broad variety of geochemical characteristics and enthalpies. Five sites with 163 samples (Upper Rhine Graben, Pannonian Basin, German Molasse Basin, Paris Basin, and Iceland) are used to develop the ANN geothermometer, while further four sites with 45 samples (Azores, El Tatio, Miavalles, and Rotorua) are used to encounter the established artificial neural network in practice to unknown data. The setup of the application, as well as the optimisation of the network architecture and its hyperparameters, are stepwise introduced. As a result, the solute ANN geothermometer, AnnRG (Artificial neural network Regression Geothermometer), provides precise reservoir temperature predictions (RMSE of 10.442 K) with a high prediction accuracy of R² = 0.978. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000164573
Veröffentlicht am 21.11.2023
Originalveröffentlichung
DOI: 10.1016/j.acags.2023.100144
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Geowissenschaften (AGW)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2023
Sprache Englisch
Identifikator ISSN: 2590-1974
KITopen-ID: 1000164573
HGF-Programm 38.04.04 (POF IV, LK 01) Geoenergy
Erschienen in Applied Computing and Geosciences
Verlag Elsevier
Band 20
Seiten Art.-Nr.: 100144
Projektinformation MALEG (BMWK, 03EE4041B)
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 10.11.2023
Schlagwörter AnnRG, Machine learning, Artificial neural network, Solute geothermometry, Geochemical exploration, Reservoir temperature prediction
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page