KIT | KIT-Bibliothek | Impressum | Datenschutz

The u ‐ p approximation versus the exact dynamic equations for anisotropic fluid‐saturated solids. II. Harmonic waves

Osinov, Vladimir A. 1
1 Institut für Bodenmechanik und Felsmechanik (IBF), Karlsruher Institut für Technologie (KIT)

Abstract:

The paper presents a comparative analysis of three systems of dynamic equations for fluid-saturated solids: the exact equations and two simplified versions known as the 𝑢-𝑝 approximations obtained by neglecting certain acceleration
terms in the exact equations. The constitutive relations for the solid skeleton are written in the general anisotropic incrementally linear form without considering any specific constitutive model or a particular type of anisotropy. The
dynamic equations are compared in relation to the existence of solutions in the form of plane harmonic waves. Emphasis is placed on finding conditions for the non-existence or existence of growing waves whose amplitude increases in time
or space as the wave propagates. The conditions are formulated in terms of the acoustic tensor of the skeleton and the compressibility of the pore fluid. In particular, it is shown that for a hyperelastic skeleton, the exact equations and one of
the 𝑢-𝑝 approximations do not have growing wave solutions, whereas the other 𝑢-𝑝 approximation may have such solutions even if the skeleton is hyperelastic.


Verlagsausgabe §
DOI: 10.5445/IR/1000164625
Veröffentlicht am 28.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Bodenmechanik und Felsmechanik (IBF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 0363-9061, 1096-9853
KITopen-ID: 1000164625
Erschienen in International Journal for Numerical and Analytical Methods in Geomechanics
Verlag John Wiley and Sons
Seiten 23
Vorab online veröffentlicht am 02.11.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page