KIT | KIT-Bibliothek | Impressum | Datenschutz

Day-Ahead Building Power Demand Forecasting in Smart Grids

Valgaev, Oleg

Abstract:

In this dissertation, we propose a novel day-ahead load forecasting method that can be applied without manual setup on any building and is more accurate than currently existing methods for predicting low-voltage loads. Day-ahead predictions allow a smart grid to mitigate the volatility of decentralized renewable generators locally, by using demand flexibilities of the buildings located in the area. Historically, power system operators forecast low-voltage demand for the upcoming day using standard load profiles. While this basic method is effective for large consumer aggregations, it lacks accuracy when applied on smaller loads and the flexibility to consider modern energy equipment in the buildings. More advanced forecasting methods that exist for the high-voltage level, rely on manual fine-tuning and can be used only in singular cases. Our aim is to develop a method that can replace standard load profiles for predicting low-voltage loads on a wide scale -- a method that can be applied on numerous individual buildings of different size and type without any explicit knowledge of them.

We formulate the wide-scale day-ahead load forecasting problem in low-voltage domain studying various loads and their characteristics. ... mehr


Volltext §
DOI: 10.5445/IR/1000164778
Veröffentlicht am 28.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Institut für Operations Research (IOR)
Publikationstyp Hochschulschrift
Publikationsdatum 28.11.2023
Sprache Englisch
Identifikator KITopen-ID: 1000164778
Verlag Karlsruher Institut für Technologie (KIT)
Umfang viii, 344 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Wirtschaftswissenschaften (WIWI)
Institut Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Prüfungsdatum 13.12.2022
Schlagwörter Load forecast, smart grids, smart buildings, functional nonparametric regression, wide-scale day-ahead load forecast, local loads
Referent/Betreuer Schmeck, Hartmut
Grothe, Oliver
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page