KIT | KIT-Bibliothek | Impressum | Datenschutz

Detection of Shading for Solar Power Forecasting Using Machine Learning Techniques

Kappler, Tim ORCID iD icon 1; Starosta, Anna Sina ORCID iD icon 1; Munzke, Nina ORCID iD icon 1; Schwarz, Bernhard ORCID iD icon; Hiller, Marc 1
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This paper presents a machine learning based solar power forecast methode that can take into account partial shading related fluctuations. Generated PV power is difficult to predict because there are various fluctuations. Such fluctuations can be weather related when a cloud passes over the array. But they can also occur due to shading caused by stationary obstacles. In this work an approach is presented that improves the forecast under such fluctuations caused by partial shading. This adaptation is necessary, because partial shading is usually not detected directly. Such shading occurs after the growth of trees or later built buildings. The presented algorithm can detect such effects itself and thus works self-learning. A correction of the prediction of a forecast model could successfully reduce forecast error due to partial shading. The model is evaluated on the basis of two months of recorded shading data in which shading was caused by a tree infront a PV array. The correction uses internal inverter data and irradiance values of the previous day to perform the correction and was able to reduce the RMSE of a 10 kWp under shading and thus improve the prediction accuracy by up to 40% depending on how strong the shading is. ... mehr


Postprint §
DOI: 10.5445/IR/1000165009
Veröffentlicht am 19.12.2023
Originalveröffentlichung
DOI: 10.4229/EUPVSEC2023/4AO.9.6
Cover der Publikation
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 28.11.2023
Sprache Englisch
Identifikator ISBN: 3-936338-88-4
KITopen-ID: 1000165009
HGF-Programm 38.02.03 (POF IV, LK 01) Batteries in Application
Erschienen in 40th European Photovoltaic Solar Energy Conference and Exhibition (EU PVSEC 2923) : 18-22 September 2023, Lisbon, Portugal, CCL Lisbon Congress Centre
Veranstaltung 40th European Photovoltaic Solar Energy Conference and Exhibition (PVSEC 2023), Lissabon, Portugal, 18.09.2023 – 22.09.2023
Verlag WIP-Munich
Seiten Art.-Nr.: 020285
Projektinformation VP: Solarpark (BMWK, 03EE1135A)
Bemerkung zur Veröffentlichung EU PVSEC 2023
Vorab online veröffentlicht am 18.09.2023
Schlagwörter PV Systems Engineering, Integrated / Applied PV, Operation, Performance and Maintenance of PV Systems
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page