KIT | KIT-Bibliothek | Impressum | Datenschutz

Computational, Label, and Data Efficiency in Deep Learning for Sparse 3D Data

Li, Lanxiao ORCID iD icon 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The deep learning technology has made fast progress in recent years. It is widely applied to sparse 3D data to perform challenging tasks, \eg, 3D object detection and semantic segmentation.
However, the high performance of deep learning comes with high costs, including computational costs and the effort to capture and label data.
This thesis investigates and improves the efficiency of deep learning for sparse 3D data to overcome the obstacles to the further development of this technology.

For better computational efficiency, a depth map-based 3D object detector is introduced. Also, transformer-based models are explored to process point clouds that cannot be represented as depth maps. The proposed novel architectures achieve competitive performance with lower computational costs than existing methods.

Also, to reduce the dependence on labeled data and improve label efficiency, this thesis researches self-supervised pre-training, which only requires unlabeled data. Specifically, it provides a closer look at invariance-based contrastive learning using 3D data and the masked auto-encoder for point clouds.
Compared to directly training neural networks on target datasets, self-supervised pre-training brings a significant performance boost without additional labels. ... mehr


Volltext §
DOI: 10.5445/IR/1000165034
Veröffentlicht am 30.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Hochschulschrift
Publikationsdatum 30.11.2023
Sprache Englisch
Identifikator KITopen-ID: 1000165034
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xvi, 227 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Elektrotechnik und Informationstechnik (ETIT)
Institut Institut für Industrielle Informationstechnik (IIIT)
Prüfungsdatum 26.10.2023
Relationen in KITopen
Referent/Betreuer Heizmann, Michael
Mikut, Ralf
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page