KIT | KIT-Bibliothek | Impressum | Datenschutz

Navigating the Unkown With AI: Multiobjective Bayesian Optimization of Non-Noble Acidic OER Catalysts

Jenewein, Ken J.; Torresi, Luca 1; Haghmoradi, Navid 2; Kormányos, Attila; Friederich, Pascal ORCID iD icon 1,2; Cherevko, Serhiy
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Experimental catalyst optimization is plagued by slow and laborious efforts. Finding innovative materials is key to advancing research areas for sustainable energy conversion, such as electrocatalysis. Artificial intelligence (AI)-guided optimization bears great potential to autonomously learn from data and plan new experiments, identifying a global optimum significantly faster than traditional design of experiment approaches. Furthermore, it is vital to incorporate essential electrocatalyst features such as activity and stability into the optimization campaign to screen for a truly high-performing material. In this study, a multiobjective Bayesian optimization (MOBO) was used in conjunction with an experimental high-throughput (HT) pipeline to refine the composition of a non-noble Co-Mn-Sb-Sn-Ti oxide toward its activity and stability for the oxygen evolution reaction (OER) in acid. The viability of the MOBO algorithm was verified on a gathered data set, and an acceleration of 17x was achieved in subsequent experimental screening compared to a hypothetical grid search scenario. During the ML-driven assessment, Mn-rich compositions were critical to designing high-performing OER catalysts, while Ti incorporation into MnOx triggered an improved activity after short accelerated stress tests. ... mehr


Volltext §
DOI: 10.5445/IR/1000165103
Veröffentlicht am 30.11.2023
Originalveröffentlichung
DOI: 10.26434/chemrxiv-2023-0509z
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000165103
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag American Chemical Society (ACS)
Umfang 13 S.
Vorab online veröffentlicht am 01.11.2023
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page