KIT | KIT-Bibliothek | Impressum | Datenschutz

Predicting reaction barriers of hydrogen atom transfer in proteins

Riedmiller, Kai; Reiser, Patrick; Bobkova, Elizaveta; Maltsev, Kiril; Gryn'ova, Ganna; Friederich, Pascal ORCID iD icon 1; Gräter, Frauke
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Hydrogen atom transfer (HAT) reactions are important in many biological systems. As these reactions are hard to observe experimentally, it is of high interest to shed light on them using simulations. Here, we present a machine learning model based on graph neural networks for the prediction of activation energies of HAT reactions in proteins. It is trained on more than 17,000 energy barriers calculated using hybrid density functional theory. We built and evaluated the model in the context of HAT in collagen, but the same workflow can easily be applied to HAT reactions in other biological or synthetic polymers. We obtain for relevant reactions (small reaction distances) a model with good predictive power (R2 <0.9 and mean absolute error of <3 kcal/mol). As the inference speed is high, this model enables evaluations of many chemical situations in rapid succession. When combined with molecular dynamics in a kinetic Monte-Carlo scheme, the model paves the way toward reactive simulations.


Volltext §
DOI: 10.5445/IR/1000165106
Veröffentlicht am 30.11.2023
Originalveröffentlichung
DOI: 10.26434/chemrxiv-2023-7hntk
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000165106
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Verlag American Chemical Society (ACS)
Vorab online veröffentlicht am 13.02.2023
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page