KIT | KIT-Bibliothek | Impressum | Datenschutz

The Role of Experimental Noise in a Hybrid Classical-Molecular Computer to Solve Combinatorial Optimization Problems

Krasecki, Veronica K.; Sharma, Abhishek; Cavell, Andrew C.; Forman, Christopher; Guo, Si Yue; Jensen, Evan Thomas; Smith, Mackinsey A.; Czerwinski, Rachel; Friederich, Pascal ORCID iD icon 1; Hickman, Riley J.; Gianneschi, Nathan; Aspuru-Guzik, Alán; Cronin, Leroy; Goldsmith, Randall H.
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)

Abstract:

Chemical and molecular-based computers may be promising alternatives to modern silicon-based computers. In particular, hybrid systems, where tasks are split between a chemical medium and traditional silicon components, may provide access and demonstration of chemical advantages such as scalability, low power dissipation, and genuine randomness. This work describes the development of a hybrid classical-molecular computer (HCMC) featuring an electrochemical reaction on top of an array of discrete electrodes with a fluorescent readout. The chemical medium, optical readout, and electrode interface combined with a classical computer generate a feedback loop to solve several canonical optimization problems in computer science such as number partitioning and prime factorization. Importantly, the HCMC makes constructive use of experimental noise in the optical readout, a milestone for molecular systems, to solve these optimization problems, as opposed to in silico random number generation. Specifically, we show calculations stranded in local minima can consistently converge on a global minimum in the presence of experimental noise. Scalability of the hybrid computer is demonstrated by expanding the number of variables from 4 to 7, increasing the number of possible solutions by 1 order of magnitude. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000165109
Veröffentlicht am 30.11.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 26.07.2023
Sprache Englisch
Identifikator ISSN: 2374-7943, 2374-7951
KITopen-ID: 1000165109
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in ACS Central Science
Verlag American Chemical Society (ACS)
Band 9
Heft 7
Seiten 1453–1465
Vorab online veröffentlicht am 14.07.2023
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page