KIT | KIT-Bibliothek | Impressum | Datenschutz

Active learning for excited states dynamics simulations to discover molecular degradation pathways

Zhou, Chen 1; Kumar, Prashant; Escudero, Daniel; Friederich, Pascal ORCID iD icon 1,2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

The demand for precise, data-efficient, and cost-effective exploration of chemical space has ignited growing interest in machine learning (ML), which exhibits remarkable capabilities in accelerating atomistic simulations of large systems over long time scales. Active learning is a technique widely used to reduce the cost of acquiring relevant ML training data. Here we present a modular, transferrable, and broadly applicable, parallel active learning orchestrator. Our workflow enables data and task parallelism for data generation, model training, and ML-enhanced simulations. We demonstrate its use in efficiently exploring multiple excited state potential energy surfaces and possible degradation pathways of an organic semiconductor used in organic light-emitting diodes. With our modular and adaptable workflow architecture, we expect our parallel active learning approach to be readily extended to explore other materials using state-of-the-art ML models, opening ways to AI-guided design and a better understanding of molecules and materials relevant to various applications, such as organic semiconductors or photocatalysts.


Volltext §
DOI: 10.5445/IR/1000165113
Veröffentlicht am 12.12.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Theoretische Informatik (ITI)
Publikationstyp Poster
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000165113
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Veranstaltung 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 10.12.2023 – 16.12.2023
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page