KIT | KIT-Bibliothek | Impressum | Datenschutz

Determination of the statistical distribution of drag and lift coefficients of refuse derived fuel by computer vision

Streier, Robin; Wirtz, Siegmar; Aleksandrov, Krasimir 1; Gehrmann, Hans-Joachim 1; Stapf, Dieter 1; Zhang, Miao 2; Vogelbacher, Markus ORCID iD icon 2; Matthes, Jörg 2; Scherer, Viktor
1 Institut für Technische Chemie (ITC), Karlsruher Institut für Technologie (KIT)
2 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This research investigates the flight behavior of refuse-derived fuel (RDF) in a drop shaft using Computer Vision
to obtain statistical data on the aerodynamic properties of the particles.
Methods to determine 3D geometry models of complex-shaped particles by photogrammetry and to obtain
time resolved particle positions and velocities are described. Furthermore, an approach to obtain the frequency
distribution of drag and lift coefficients from photogrammetric analysis and drop shaft experiments is presented.
The image evaluation is based on algorithms of the open-source libraries OpenCV, COLMAP as well as MeshLab
and Open3D. The precision of the system is validated employing model particles with known geometry. The 3D
particle models overestimate the particle surface area by 4.58 %, the position detection works with a mean
deviation of 2.73 %. The average sink rate is calculated with an accuracy of 4.87 % and the drag coefficient with
an accuracy of 2.08 %. Finally, the frequency distribution of four RDF fractions, namely, textiles, cardboard, 3D
plastic particles and 2D plastic foils are presented.


Postprint §
DOI: 10.5445/IR/1000165129
Veröffentlicht am 28.06.2024
Originalveröffentlichung
DOI: 10.1016/j.fuel.2023.128847
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Technische Chemie (ITC)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.11.2023
Sprache Englisch
Identifikator ISSN: 0016-2361, 1873-7153
KITopen-ID: 1000165129
HGF-Programm 38.05.01 (POF IV, LK 01) Anthropogenic Carbon Cycle
Weitere HGF-Programme 37.12.01 (POF IV, LK 01) Digitalization & System Technology for Flexibility Solutions
Erschienen in Fuel
Verlag Elsevier
Band 352
Seiten 128847
Vorab online veröffentlicht am 27.06.2023
Schlagwörter Drag and lift coefficients, Refuse derived fuel, Computer vision, Photogrammetry, Stereo vision
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page