KIT | KIT-Bibliothek | Impressum | Datenschutz

Error analysis of the Lie splitting for semilinear wave equations with finite-energy solutions

Ruff, Maximilian 1; Schnaubelt, Roland 1
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We study time integration schemes for $\dot{H^1}$-solutions to the energy-(sub)critical semilinear wave equation on $\mathbb{R}^3$. We show first-order convergence in $L^2$ for the Lie splitting and convergence order $3/2$ for a corrected Lie splitting. To our knowledge this includes the first error analysis performed for scaling-critical dispersive problems. Our approach is based on discrete-time Strichartz estimates, including one (with a logarithmic correction) for the case of the forbidden endpoint. Our schemes and the Strichartz estimates contain frequency cut-offs.


Volltext §
DOI: 10.5445/IR/1000165330
Veröffentlicht am 20.12.2023
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 11.2023
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000165330
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 42 S.
Serie CRC 1173 Preprint ; 2023/24
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter energy-critical semilinear wave equation, Lie splitting, error analysis, discrete Strichartz estimates
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page