KIT | KIT-Bibliothek | Impressum | Datenschutz

Data-driven algorithms for predicting energy-efficient operating points in agricultural soil tillage

Kazenwadel, Benjamin ORCID iD icon 1; Becker, Simon 1; Michiels, Lukas ORCID iD icon 1; Geimer, Marcus ORCID iD icon 1
1 Institut für Fahrzeugsystemtechnik (FAST), Karlsruher Institut für Technologie (KIT)

Abstract:

Sustainability is especially important in power-intensive tasks in the agricultural industry, and therefore an aspect with optimization potential. During adjustments of the operating speed, fuel consumption can vary. The prediction of the most efficient operating point for the tractor-implement combinations is challenging due to the complexity of the machinery and the varying interaction forces between soil and machine. Currently, human drivers are required to manually adjust the operating speed. This paper presents and compares two optimization algorithms for predicting the most energy-efficient operating speed based on real-time measurements of the system state. Field tests were conducted to evaluate the algorithms under varying soil types and operating conditions. The algorithms accurately determined advantageous operating points within the defined working quality boundaries, making them promising tools for increasing sustainability in the agricultural industry.

Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 11.11.2023
Sprache Englisch
Identifikator ISBN: 978-3-18-092427-4
ISSN: 0083-5560
KITopen-ID: 1000165490
Erschienen in Land.Technik AgEng 2023
Veranstaltung 80th International Conference on Agricultural Engineering (2023), Hannover, Deutschland, 10.11.2023 – 11.11.2023
Verlag VDI Verlag
Seiten 519-528
Serie VDI-Berichte ; 2427
Schlagwörter Efficiency, Data-driven Algorithms, Optimization, Operating Point Prediction
Nachgewiesen in Dimensions
OpenAlex
Globale Ziele für nachhaltige Entwicklung Ziel 2 – Kein Hunger

Preprint §
DOI: 10.5445/IR/1000165490
Veröffentlicht am 11.12.2023
Originalveröffentlichung
DOI: 10.51202/9783181024270
Dimensions
Zitationen: 1
Seitenaufrufe: 142
seit 11.12.2023
Downloads: 166
seit 11.12.2023
Cover der Publikation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page