KIT | KIT-Bibliothek | Impressum | Datenschutz

Time Series Prediction for Energy Consumption of Computer Numerical Control Axes Using Hybrid Machine Learning Models

Ströbel, Robin ORCID iD icon 1; Probst, Yannik 1; Deucker, Samuel 1; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

The prediction of energy-related time series for computer numerical control (CNC) machine tool axes is an essential enabler for the shift towards autonomous and intelligent production. In particular, a precise prediction of energy consumption is needed to determine the environmental impact of a product and the optimization of its production. For this purpose, a novel approach for predicting high-frequency time series of numerically controlled axes based on the program code to be executed is presented. The method involves simulative preprocessing of the input NC code to determine each axis’s acceleration, velocity, and process force. Combined with the material removal rate, these variables are input for a machine learning (ML) model that delivers axis-specific high-frequency time series predictions. Compared to common approaches, it is thus possible to make predictions for the variable energy consumption of machine tools for any tool path or target resolution in the time domain. Experiments show that this approach achieves a high precision when a robust learning data basis is available. For the X-, Y-, and Z-axis, errors of 0.2%, −1.09%, and 0.09% for aircut and of 0.15%, −3.55%, and 0.08% for material removal can be achieved. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000165753
Veröffentlicht am 03.01.2024
Originalveröffentlichung
DOI: 10.3390/machines11111015
Scopus
Zitationen: 6
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2075-1702
KITopen-ID: 1000165753
Erschienen in Machines
Verlag MDPI
Band 11
Heft 11
Seiten Art.Nr.: 1015
Vorab online veröffentlicht am 08.11.2023
Schlagwörter machine tool, CNC, time series prediction, machine learning
Nachgewiesen in Dimensions
Web of Science
Scopus
Relationen in KITopen
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page