KIT | KIT-Bibliothek | Impressum | Datenschutz

Dual-Branch U-Net Architecture for Retinal Lesions Segmentation on Fundus Image

Yin, Ming; Soomro, Toufique Ahmed; Jandan, Fayyaz Ali; Fatihi, Ayoub; Ubaid, Faisal Bin; Irfan, Muhammad; Afifi, Ahmed J. ORCID iD icon 1; Rahman, Saifur; Telenyk, Sergii; Nowakowski, Grzegorz
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

Deep learning has found widespread application in diabetic retinopathy (DR) screening, primarily for lesion detection. However, this approach encounters challenges such as information loss due to convolutional operations, shape uncertainty, and the high similarity between different lesions types. These factors collectively hinder the accurate segmentation of lesions. In this research paper, we introduce a novel dual-branch U-Net architecture, referred to as Dual-Branch (DB)-U-Net, tailored to address the intricacies of small-scale lesion segmentation. Our approach involves two branches: one employs a U-Net to capture the shared characteristics of lesions, while the other utilizes a modified U-Net, known as U2Net, equipped with two decoders that share a common encoder. U2Net is responsible for generating probability maps for lesion segmentation as well as corresponding boundary segmentation. DB U-Net combines the outputs of U2Net and U-Net as a dual branch, concatenating their segmentation maps to produce the final result. To mitigate the challenge of imbalanced data, we employ the Dice loss as a loss function. We evaluate the effectiveness of our approach on publicly available datasets, including DDR, IDRiD, and E-Ophtha. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000165767
Veröffentlicht am 04.01.2024
Originalveröffentlichung
DOI: 10.1109/ACCESS.2023.3333364
Scopus
Zitationen: 7
Web of Science
Zitationen: 4
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2169-3536
KITopen-ID: 1000165767
Erschienen in IEEE Access
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 11
Seiten 130451 – 130465
Schlagwörter Deep learning, neural network, U-net, computer-aided diagnostic, retinal lesions segmentation
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page