KIT | KIT-Bibliothek | Impressum | Datenschutz

The Use of Artificial Intelligence for the Classification of Craniofacial Deformities

Kuehle, Reinald; Ringwald, Friedemann; Bouffleur, Frederic; Hagen, Niclas; Schaufelberger, Matthias ORCID iD icon 1; Nahm, Werner 1; Hoffmann, Jürgen; Freudlsperger, Christian; Engel, Michael; Eisenmann, Urs
1 Institut für Biomedizinische Technik (IBT), Karlsruher Institut für Technologie (KIT)

Abstract:

Positional cranial deformities are a common finding in toddlers, yet differentiation from craniosynostosis can be challenging. The aim of this study was to train convolutional neural networks (CNNs) to classify craniofacial deformities based on 2D images generated using photogrammetry as a radiation-free imaging technique. A total of 487 patients with photogrammetry scans were included in this retrospective cohort study: children with craniosynostosis (n = 227), positional deformities (n = 206), and healthy children (n = 54). Three two-dimensional images were extracted from each photogrammetry scan. The datasets were divided into training, validation, and test sets. During the training, fine-tuned ResNet-152s were utilized. The performance was quantified using tenfold cross-validation. For the detection of craniosynostosis, sensitivity was at 0.94 with a specificity of 0.85. Regarding the differentiation of the five existing classes (trigonocephaly, scaphocephaly, positional plagiocephaly left, positional plagiocephaly right, and healthy), sensitivity ranged from 0.45 (positional plagiocephaly left) to 0.95 (scaphocephaly) and specificity ranged from 0.87 (positional plagiocephaly right) to 0.97 (scaphocephaly). ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000165773
Veröffentlicht am 03.01.2024
Originalveröffentlichung
DOI: 10.3390/jcm12227082
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Biomedizinische Technik (IBT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2077-0383
KITopen-ID: 1000165773
Erschienen in Journal of Clinical Medicine
Verlag MDPI
Band 12
Heft 22
Seiten Art.Nr.: 7082
Vorab online veröffentlicht am 14.11.2023
Schlagwörter artificial intelligence, deep learning, craniosynostoses, photogrammetry, congenital abnormalities, trigonocephaly
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page