KIT | KIT-Bibliothek | Impressum | Datenschutz

Accelerating Materials Discovery: Automated Identification of Prospects from X‐Ray Diffraction Data in Fast Screening Experiments

Schuetzke, Jan ORCID iD icon 1; Schweidler, Simon ORCID iD icon 2; Muenke, Friedrich R. ORCID iD icon 1; Orth, Andre 1; Khandelwal, Anurag D. 2; Breitung, Ben ORCID iD icon 2; Aghassi-Hagmann, Jasmin ORCID iD icon 2; Reischl, Markus ORCID iD icon 1
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

New materials are frequently synthesized and optimized with the explicit intention to improve their properties to meet the ever-increasing societal requirements for high-performance and energy-efficient electronics, new battery concepts, better recyclability, and low-energy manufacturing processes. This often involves exploring vast combinations of stoichiometries and compositions, a process made more efficient by high-throughput robotic platforms. Nonetheless, subsequent analytical methods are essential to screen the numerous samples and identify promising material candidates. X-ray diffraction is a commonly used analysis method available in most laboratories which gives insight into the crystalline structure and reveals the presence of phases in a powder sample. Herein, a method for automating the analysis of XRD patterns, which uses a neural network model to classify samples into nondiffracting, single-phase, and multi-phase structures, is presented. To train neural networks for identifying materials with compositions not matching known crystallographic structures, a synthetic data generation approach is developed. The application of the neural networks on high-entropy oxides experimental data is demonstrated, where materials frequently deviate from anticipated structures. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000166061
Veröffentlicht am 29.12.2023
Originalveröffentlichung
DOI: 10.1002/aisy.202300501
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.01.2024
Sprache Englisch
Identifikator ISSN: 2640-4567
KITopen-ID: 1000166061
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Advanced Intelligent Systems
Verlag Wiley-VCH Verlag
Band 6
Heft 3
Seiten Art.-Nr.: 2300501
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 24.12.2023
Nachgewiesen in Dimensions
Scopus
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere EnergieZiel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page