KIT | KIT-Bibliothek | Impressum | Datenschutz

Tinto: Multisensor Benchmark for 3-D Hyperspectral Point Cloud Segmentation in the Geosciences

Afifi, Ahmed J. ORCID iD icon 1; Thiele, Samuel T.; Rizaldy, Aldino; Lorenz, Sandra; Ghamisi, Pedram; Tolosana-Delgado, Raimon; Kirsch, Moritz; Gloaguen, Richard; Heizmann, Michael 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)

Abstract:

The increasing use of deep learning techniques has reduced interpretation time and, ideally, reduced interpreter bias by automatically deriving geological maps from digital outcrop models. However, accurate validation of these automated mapping approaches is a significant challenge due to the subjective nature of geological mapping and the difficulty in collecting quantitative validation data. Additionally, many state-of-the-art deep learning methods are limited to 2-D image data, which is insufficient for 3-D digital outcrops, such as hyperclouds. To address these challenges, we present Tinto, a multisensor benchmark digital outcrop dataset designed to facilitate the development and validation of deep learning approaches for geological mapping, especially for nonstructured 3-D data like point clouds. Tinto comprises two complementary sets: 1) a real digital outcrop model from Corta Atalaya (Spain), with spectral attributes and ground-truth data and 2) a synthetic twin that uses latent features in the original datasets to reconstruct realistic spectral data (including sensor noise and processing artifacts) from the ground truth. The point cloud is dense and contains 3242964 labeled points. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167013
Veröffentlicht am 05.01.2024
Originalveröffentlichung
DOI: 10.1109/TGRS.2023.3340293
Scopus
Zitationen: 4
Web of Science
Zitationen: 1
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 07.12.2023
Sprache Englisch
Identifikator ISSN: 0196-2892, 1558-0644
KITopen-ID: 1000167013
Erschienen in IEEE Transactions on Geoscience and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 62
Seiten 1–15
Schlagwörter Deep learning, digital outcrop, hypercloud, hyperspectral, point cloud, point cloud segmentation, remote sensing, synthetic data
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page