KIT | KIT-Bibliothek | Impressum | Datenschutz

Quantum criticality on a compressible lattice

Sarkar, Saheli; Franke, Lars 1; Grivas, Nikolas; Garst, Markus ORCID iD icon 1
1 Institut für Theoretische Festkörperphysik (TFP), Karlsruher Institut für Technologie (KIT)

Abstract:

The stability of a quantum critical point in the $O(N)$ universality class with respect to an elastic coupling, that preserves $O(N)$ symmetry, is investigated for isotropic elasticity in the framework of the renormalization group (RG) close to the upper critical dimension $d=3−ϵ$. With respect to the Wilson-Fisher fixed point, we find that the elastic coupling is relevant in the RG sense for $1≤N≤4$, and the crystal becomes microscopically unstable, i.e., a sound velocity vanishes at a finite value of the correlation length $ξ$. For $N>4$, an additional fixed point emerges that is located at a finite value of the dimensionless elastic coupling. This fixed point is repulsive and separates the flow to weak and strong elastic coupling. As the fixed point is approached the sound velocity is found to vanish only asymptotically as $ξ→∞$ such that the crystal remains microscopically stable for any finite value of $ξ$. The fixed point structure we find for the quantum problem is distinct from the classical counterpart in $d=4−ϵ$, where the crystal always remains microscopically stable for finite $ξ$.


Volltext §
DOI: 10.5445/IR/1000167019
Veröffentlicht am 05.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Theoretische Festkörperphysik (TFP)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000167019
Umfang 12 S.
Vorab online veröffentlicht am 06.07.2023
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page