KIT | KIT-Bibliothek | Impressum | Datenschutz

Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks

Koundal, Paras 1; IceCube Collaboration
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract:

The IceCube Neutrino Observatory is a multi-component detector embedded deep within the South-Pole Ice. This proceeding will discuss an analysis from an integrated operation of IceCube and its surface array, IceTop, to estimate cosmic-ray composition. The work will describe a novel graph neural network based approach for estimating the mass of primary cosmic rays, that takes advantage of signal-footprint information and reconstructed cosmic-ray air shower parameters. In addition, the work will also introduce new composition-sensitive parameters for improving the estimation of cosmic-ray composition, with the potential of improving our understanding of the high-energy muon content in cosmic-ray air showers.


Verlagsausgabe §
DOI: 10.5445/IR/1000167205
Veröffentlicht am 16.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 14.12.2023
Sprache Englisch
Identifikator ISSN: 1824-8039
KITopen-ID: 1000167205
Erschienen in Proceedings of 27th European Cosmic Ray Symposium — PoS(ECRS)
Veranstaltung 27th European Cosmic Ray Symposium (ECRS 2022), Nimwegen, Niederlande, 25.07.2022 – 29.07.2022
Verlag Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Seiten Art.-Nr.: 085
Serie Pos proceedings of science ; 423
Vorab online veröffentlicht am 15.11.2023
Nachgewiesen in Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page