KIT | KIT-Bibliothek | Impressum | Datenschutz

Cosmic-Ray Composition analysis at IceCube using Graph Neural Networks

Koundal, Paras 1; IceCube Collaboration
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract:

The IceCube Neutrino Observatory is a multi-component detector embedded deep within the South-Pole Ice. This proceeding will discuss an analysis from an integrated operation of IceCube and its surface array, IceTop, to estimate cosmic-ray composition. The work will describe a novel graph neural network based approach for estimating the mass of primary cosmic rays, that takes advantage of signal-footprint information and reconstructed cosmic-ray air shower parameters. In addition, the work will also introduce new composition-sensitive parameters for improving the estimation of cosmic-ray composition, with the potential of improving our understanding of the high-energy muon content in cosmic-ray air showers.


Volltext §
DOI: 10.5445/IR/1000167361
Veröffentlicht am 16.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000167361
Umfang 9 S.
Vorab online veröffentlicht am 30.11.2022
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page