KIT | KIT-Bibliothek | Impressum | Datenschutz

PickBlue: Seismic Phase Picking for Ocean Bottom Seismometers With Deep Learning

Bornstein, T.; Lange, D.; Münchmeyer, J.; Woollam, J. 1; Rietbrock, A. ORCID iD icon 1; Barcheck, G.; Grevemeyer, I.; Tilmann, F.
1 Geophysikalisches Institut (GPI), Karlsruher Institut für Technologie (KIT)

Abstract:

Detecting phase arrivals and pinpointing the arrival times of seismic phases in seismograms is crucial for many seismological analysis workflows. For land station data, machine learning methods have already found widespread adoption. However, deep learning approaches are not yet commonly applied to ocean bottom data due to a lack of appropriate training data and models. Here, we compiled an extensive and labeled ocean bottom seismometer (OBS) data set from 15 deployments in different tectonic settings, comprising ∼90,000 P and ∼63,000 S manual picks from 13,190 events and 355 stations. We propose PickBlue, an adaptation of the two popular deep learning networks EQTransformer and PhaseNet. PickBlue joint processes three seismometer recordings in conjunction with a hydrophone component and is trained with the waveforms in the new database. The performance is enhanced by employing transfer learning, where initial weights are derived from models trained with land earthquake data. PickBlue significantly outperforms neural networks trained with land stations and models trained without hydrophone data. The model achieves a mean absolute deviation of 0.05 s for P-waves and 0.12 s for S-waves, and we apply the picker on the Hikurangi Ocean Bottom Tremor and Slow Slip OBS deployment offshore New Zealand. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000167559
Veröffentlicht am 24.01.2024
Originalveröffentlichung
DOI: 10.1029/2023EA003332
Scopus
Zitationen: 4
Web of Science
Zitationen: 2
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Geophysikalisches Institut (GPI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2024
Sprache Englisch
Identifikator ISSN: 2333-5084
KITopen-ID: 1000167559
Erschienen in Earth and Space Science
Verlag American Geophysical Union (AGU)
Band 11
Heft 1
Seiten Art.: e2023EA003332
Vorab online veröffentlicht am 27.12.2023
Schlagwörter ocean bottom seismometer, phase picking, OBS seismicity database, machine learning, onset determination
Nachgewiesen in Web of Science
Scopus
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page