KIT | KIT-Bibliothek | Impressum | Datenschutz

Benchmarking Anomaly Detection on Camera and Lidar Data with 3D Voxel Representation

Roessler, Lukas Namgyu 1,2
1 FZI Forschungszentrum Informatik (FZI)
2 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

The research field of autonomous driving has seen rapid development in recent years. There are,
however, challenges that hinder the deployment of autonomous vehicles on the road. One of these
challenges is the detection of unknown or anomalous instances on the road. The field of Anomaly
Detection is crucial for the safe deployment of these systems, as detection failure could lead to the
execution of potentially dangerous behavior.
Most autonomous vehicles employ an array of different sensors for scene understanding. To
effectively utilize data extracted from multiple sensors, it is important to fuse all sensor data into
a common state representation.
This thesis explores anomaly detection in combination with sensor fusion representations by
evaluating anomaly detection methods for camera and LiDAR on voxel grids. The current stateof-
the-art of anomaly detection for camera and LiDAR is reviewed to identify current trends and
research gaps in the field. From the literature review, a camera-based method and a LiDAR-based
method were selected for evaluation on the FZI AnoVox benchmark, an anomaly detection dataset
that includes ground truth information on 3D surroundings in the form of a voxel grid. ... mehr


Volltext §
DOI: 10.5445/IR/1000167624
Veröffentlicht am 24.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Hochschulschrift
Publikationsdatum 30.11.2023
Sprache Englisch
Identifikator KITopen-ID: 1000167624
Verlag Karlsruher Institut für Technologie (KIT)
Art der Arbeit Abschlussarbeit - Bachelor
Referent/Betreuer Bogdoll, Daniel
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page