KIT | KIT-Bibliothek | Impressum | Datenschutz

Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks

Schiefer, Felix ORCID iD icon 1; Kattenborn, Teja; Frick, Annett; Frey, Julian; Schall, Peter; Koch, Barbara; Schmidtlein, Sebastian ORCID iD icon 1
1 Institut für Geographie und Geoökologie (IFGG), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

With consumer-grade unmanned aerial vehicles (UAVs) on the rise, which enable easy, time-flexible, and cost-effective acquisition of very high-resolution RGB data, the mapping of forest tree species using solely RGB imagery is of high interest, as it does not rely on sophisticated sensors, does not require extensive calibration and preprocessing and, therefore, enables the application by a wide audience. In combination with convolutional neural networks (CNNs), which particularly exploit spatial patterns and, therefore, highly benfit from very high-resolution remote sensing, this offers great potential for accurately mapping forest tree species.

Here, we present the findings of our recent study, in which we used very high-resolution RGB imagery from UAVs in combination with CNNs for the mapping of forest tree species. In this study, we used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that concurrently segments and classifies tree species from imagery. ... mehr


Volltext §
DOI: 10.5445/IR/1000167640
Veröffentlicht am 24.01.2024
Originalveröffentlichung
DOI: 10.5194/egusphere-egu21-12957
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Geographie und Geoökologie (IFGG)
Publikationstyp Vortrag
Publikationsdatum 26.04.2021
Sprache Englisch
Identifikator KITopen-ID: 1000167640
Veranstaltung European Geosciences Union General Assembly (EGU 2021), Online, 19.04.2021 – 30.04.2021
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page