KIT | KIT-Bibliothek | Impressum | Datenschutz

Adaptive Bernstein change detector for high-dimensional data streams

Heyden, Marco 1; Fouché, Edouard; Arzamasov, Vadim 1; Fenn, Tanja; Kalinke, Florian 1; Böhm, Klemens 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Change detection is of fundamental importance when analyzing data streams. Detecting changes both quickly and accurately enables monitoring and prediction systems to react, e.g., by issuing an alarm or by updating a learning algorithm. However, detecting changes is challenging when observations are high-dimensional. In high-dimensional data, change detectors should not only be able to identify when changes happen, but also in which subspace they occur. Ideally, one should also quantify how severe they are. Our approach, ABCD, has these properties. ABCD learns an encoder-decoder model and monitors its accuracy over a window of adaptive size. ABCD derives a change score based on Bernstein's inequality to detect deviations in terms of accuracy, which indicate changes. Our experiments demonstrate that ABCD outperforms its best competitor by up to 20% in F1-score on average. It can also accurately estimate changes' subspace, together with a severity measure that correlates with the ground truth.


Volltext §
DOI: 10.5445/IR/1000167652
Veröffentlicht am 24.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000167652
Umfang 32 S.
Vorab online veröffentlicht am 22.06.2023
Schlagwörter change detection, concept drift, data streams, high-dimensionality
Nachgewiesen in Dimensions
arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page