KIT | KIT-Bibliothek | Impressum | Datenschutz

Adaptive Bernstein change detector for high-dimensional data streams

Heyden, Marco 1; Fouché, Edouard 2; Arzamasov, Vadim 1; Fenn, Tanja 2; Kalinke, Florian 1; Böhm, Klemens 1
1 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Change detection is of fundamental importance when analyzing data streams. Detecting changes both quickly and accurately enables monitoring and prediction systems to react, e.g., by issuing an alarm or by updating a learning algorithm. However, detecting changes is challenging when observations are high-dimensional. In high-dimensional data, change detectors should not only be able to identify when changes happen, but also in which subspace they occur. Ideally, one should also quantify how severe they are. Our approach, ABCD, has these properties. ABCD learns an encoder-decoder model and monitors its accuracy over a window of adaptive size. ABCD derives a change score based on Bernstein’s inequality to detect deviations in terms of accuracy, which indicate changes. Our experiments demonstrate that ABCD outperforms its best competitor by up to 20% in F1-score on average. It can also accurately estimate changes’ subspace, together with a severity measure that correlates with the ground truth.


Verlagsausgabe §
DOI: 10.5445/IR/1000167550
Veröffentlicht am 24.01.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Theoretische Informatik (ITI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2024
Sprache Englisch
Identifikator ISSN: 1384-5810, 1573-756X
KITopen-ID: 1000167550
Erschienen in Data Mining and Knowledge Discovery
Verlag Springer-Verlag
Band 38
Heft 3
Seiten 1334–1363
Vorab online veröffentlicht am 09.01.2024
Schlagwörter Change detection, Concept drift, Data streams, High-dimensionality
Nachgewiesen in Web of Science
Dimensions
Scopus
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page