KIT | KIT-Bibliothek | Impressum | Datenschutz

Segmentation of 71 Anatomical Structures Necessary for the Evaluation of Guideline-Conforming Clinical Target Volumes in Head and Neck Cancers

Walter, Alexandra ORCID iD icon 1; Hoegen-Saßmannshausen, Philipp; Stanic, Goran; Rodrigues, Joao Pedro; Adeberg, Sebastian; Jäkel, Oliver; Frank, Martin ORCID iD icon 1; Giske, Kristina
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

The delineation of the clinical target volumes (CTVs) for radiation therapy is time-consuming, requires intensive training and shows high inter-observer variability. Supervised deep-learning methods depend heavily on consistent training data; thus, State-of-the-Art research focuses on making CTV labels more homogeneous and strictly bounding them to current standards. International consensus expert guidelines standardize CTV delineation by conditioning the extension of the clinical target volume on the surrounding anatomical structures. Training strategies that directly follow the construction rules given in the expert guidelines or the possibility of quantifying the conformance of manually drawn contours to the guidelines are still missing. Seventy-one anatomical structures that are relevant to CTV delineation in head- and neck-cancer patients, according to the expert guidelines, were segmented on 104 computed tomography scans, to assess the possibility of automating their segmentation by State-of-the-Art deep learning methods. All 71 anatomical structures were subdivided into three subsets of non-overlapping structures, and a 3D nnU-Net model with five-fold cross-validation was trained for each subset, to automatically segment the structures on planning computed tomography scans. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168152
Veröffentlicht am 06.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2024
Sprache Englisch
Identifikator ISSN: 2072-6694
KITopen-ID: 1000168152
Erschienen in Cancers
Verlag MDPI
Band 16
Heft 2
Seiten Art.-Nr.: 415
Vorab online veröffentlicht am 18.01.2024
Schlagwörter automatic segmentation, anatomical structures, multi-label segmentation, clinical target volume delineation, lymph-node-level segmentation, expert guidelines, head and neck cancer
Nachgewiesen in Scopus
Dimensions
Web of Science
Globale Ziele für nachhaltige Entwicklung Ziel 3 – Gesundheit und Wohlergehen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page