KIT | KIT-Bibliothek | Impressum | Datenschutz

A data-driven approach to predict the saturation magnetization for magnetic 14:2:1 phases from chemical composition

Choudhary, Amit Kumar 1; Hohs, Dominic 1; Jansche, Andreas; Bernthaler, Timo; Goll, Dagmar; Schneider, Gerhard 1
1 Fakultät für Maschinenbau (MACH), Karlsruher Institut für Technologie (KIT)

Abstract:

14:2:1 phases enable permanent magnets with excellent magnetic properties. From an application viewpoint, saturation polarization, Curie temperature, and anisotropy constant are important parameters for the magnetic 14:2:1 phases. Novel chemical compositions that represent new 14:2:1 phases require especially maximum saturation magnetization values at application-specific operating temperatures to provide maximum values for the remanence and the maximum energy density in permanent magnets. Therefore, accurate knowledge of the saturation magnetization M$_s$ is important. M$_s$ gets affected by chemical composition in a twofold way, with chemical composition significantly influencing both magnetic moments and crystal structure parameters. Therefore, for magnetic 14:2:1 phases, we have developed a regression model with the aim to predict the saturation magnetization in [µ$_B$/f.u.] at room temperature directly from the chemical composition as input features. The dataset for the training and testing of the model is very diverse, with literature data of 143 unique phases and 55 entries of repeated phases belonging to the ternary, quaternary, quinary, and senary alloy systems. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168195
Veröffentlicht am 08.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Maschinenbau (MACH)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2024
Sprache Englisch
Identifikator ISSN: 2158-3226
KITopen-ID: 1000168195
Erschienen in AIP Advances
Verlag American Institute of Physics (AIP)
Band 14
Heft 1
Seiten Art.-Nr.: 015060
Vorab online veröffentlicht am 26.01.2024
Schlagwörter Magnetic dipole moment, Artificial neural networks, Machine learning, Magnetic properties, Intrinsic properties, Chemical elements, Regression analysis, Descriptive statistics, Statistical mechanics models
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page