KIT | KIT-Bibliothek | Impressum | Datenschutz

Block-radial symmetry breaking for ground states of biharmonic NLS

Mandel, Rainer 1; Oliveira e Silva, Diogo
1 Institut für Analysis (IANA), Karlsruher Institut für Technologie (KIT)

Abstract:

We prove that the biharmonic NLS equation
$\Delta^2u + 2\Delta u + (1 + ε)u = |u|^{p−2}u\ in\mathbb{R}^d$
has at least $k + 1$ geometrically distinct solutions if $ε > 0$ is small enough and $2 < p < 2^k_*$ , where $2^k_* $is an explicit critical exponent arising from the Fourier restriction theory of $O(d − k) × O(k)$-symmetric functions. This extends the recent symmetry breaking result of Lenzmann–Weth (Symmetry breaking for ground states of biharmonic NLS via Fourier extension estimates, 2023) and relies on a chain of strict inequalities for the corresponding Rayleigh quotients associated with distinct values of $k$. We further prove that, as $ε → 0^+$, the Fourier transform of each ground state concentrates near the unit sphere and becomes rough in the scale of Sobolev spaces


Verlagsausgabe §
DOI: 10.5445/IR/1000168204
Veröffentlicht am 08.02.2024
Originalveröffentlichung
DOI: 10.1007/s00526-023-02654-9
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2024
Sprache Englisch
Identifikator ISSN: 0944-2669, 1432-0835
KITopen-ID: 1000168204
Erschienen in Calculus of Variations and Partial Differential Equations
Verlag Springer
Band 63
Heft 2
Seiten Art.-Nr.: 45
Vorab online veröffentlicht am 28.01.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page