KIT | KIT-Bibliothek | Impressum | Datenschutz

MetaGraspNetV2: All-in-One Dataset Enabling Fast and Reliable Robotic Bin Picking via Object Relationship Reasoning and Dexterous Grasping

Gilles, Maximilian 1; Chen, Yuhao; Zeng, Emily Zhixuan; Wu, Yifan; Furmans, Kai ORCID iD icon 1; Wong, Alexander; Rayyes, Rania 1
1 Institut für Fördertechnik und Logistiksysteme (IFL), Karlsruher Institut für Technologie (KIT)

Abstract:

Grasping unknown objects in unstructured environments is one of the most challenging and demanding tasks for robotic bin picking systems. Developing a holistic approach is crucial to building such dexterous bin picking systems to meet practical requirements on speed, cost and reliability. Proposed datasets so far focus only on challenging sub-problems and are therefore limited in their ability to leverage the complementary relationship between individual tasks. In this paper, we tackle this holistic data challenge and design MetaGraspNetV2, an all-in-one bin picking dataset consisting of (i) a photo-realistic dataset with over 296k images, which has been created through physics-based metaverse synthesis; and (ii) a real-world test dataset with 3.2k images featuring task-specific difficulty levels. Both datasets provide full annotations for amodal panoptic segmentation, object relationship detection, occlusion reasoning, 6-DoF pose estimation, and grasp detection for a parallel-jaw as well as a vacuum gripper. Extensive experiments demonstrate that our dataset outperforms state-of-the-art datasets in object detection, instance segmentation, amodal detection, parallel-jaw grasping, and vacuum grasping. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168221
Veröffentlicht am 08.02.2024
Originalveröffentlichung
DOI: 10.1109/TASE.2023.3328964
Scopus
Zitationen: 4
Web of Science
Zitationen: 2
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fördertechnik und Logistiksysteme (IFL)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2024
Sprache Englisch
Identifikator ISSN: 1545-5955, 1558-3783
KITopen-ID: 1000168221
Erschienen in IEEE Transactions on Automation Science and Engineering
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 21
Heft 3
Seiten 2302–2320
Vorab online veröffentlicht am 06.11.2023
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page