KIT | KIT-Bibliothek | Impressum | Datenschutz

A numerical verification method for multi-class feed-forward neural networks

Grimm, Daniel 1; Tollner, Dávid; Kraus, David ORCID iD icon 1; Török, Árpád; Sax, Eric 1; Szalay, Zsolt
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract:

The use of neural networks in embedded systems is becoming increasingly common, but these systems often operate in safety–critical environments, where a failure or incorrect output can have serious consequences. Therefore, it is essential to verify the expected operation of neural networks before deploying them in such settings. In this publication, we present a novel approach for verifying the correctness of these networks using a nonlinear equation system under the assumption of closed-form activation functions. Our method is able to accurately predict the output of the network for given specification intervals, providing a valuable tool for ensuring the reliability and safety of neural networks in embedded systems.


Verlagsausgabe §
DOI: 10.5445/IR/1000168342
Veröffentlicht am 15.02.2024
Originalveröffentlichung
DOI: 10.1016/j.eswa.2024.123345
Scopus
Zitationen: 7
Web of Science
Zitationen: 4
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.08.2024
Sprache Englisch
Identifikator ISSN: 0957-4174, 1873-6793
KITopen-ID: 1000168342
Erschienen in Expert Systems with Applications
Verlag Elsevier
Band 247
Seiten Art.-Nr.: 123345
Vorab online veröffentlicht am 28.01.2024
Schlagwörter Neural network verification, Nonlinear optimization, Explainable neural networks
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page