KIT | KIT-Bibliothek | Impressum | Datenschutz

Generative data augmentation and automated optimization of convolutional neural networks for process monitoring

Schiemer, Robin 1; Rüdt, Matthias; Hubbuch, Jürgen ORCID iD icon 1
1 Institut für Bio- und Lebensmitteltechnik (BLT), Karlsruher Institut für Technologie (KIT)

Abstract:

Chemometric modeling for spectral data is considered a key technology in biopharmaceutical processing to realize real-time process control and release testing. Machine learning (ML) models have been shown to increase the accuracy
of various spectral regression and classification tasks, remove challenging preprocessing steps for spectral data, and promise to improve the transferability of models when compared to commonly applied, linear methods. The training and optimization of ML models require large data sets which are not available in the context of biopharmaceutical processing.
Generative methods to extend data sets with realistic in silico samples, socalled data augmentation, may provide the means to alleviate this challenge. In this study, we develop and implement a novel data augmentation method for
generating in silico spectral data based on local estimation of pure component profiles for training convolutional neural network (CNN) models using four data sets. We simultaneously tune hyperparameters associated with data
augmentation and the neural network architecture using Bayesian optimization. Finally, we compare the optimized CNN models with partial least-squares regression models (PLS) in terms of accuracy, robustness, and
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168629
Veröffentlicht am 27.02.2024
Originalveröffentlichung
DOI: 10.3389/fbioe.2024.1228846
Scopus
Zitationen: 1
Web of Science
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Bio- und Lebensmitteltechnik (BLT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2296-4185
KITopen-ID: 1000168629
Erschienen in Frontiers in Bioengineering and Biotechnology
Verlag Frontiers Media SA
Band 12
Seiten Art.-Nr.: 1228846
Vorab online veröffentlicht am 31.01.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page