KIT | KIT-Bibliothek | Impressum | Datenschutz

Introduction of an industrial transfer learning use case systematization for machine tools

Netzer, Markus 1; Michelberger, Jonas 1; Puchta, Alexander 1; Verl, Alexander; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

Traditional intelligent systems such as fault detection are mainly developed for isolated use on single machines and are mostly trained individually. A cross-machine knowledge transfer of intelligent systems holds an immense potential and can reduce implementation effort of intelligent systems. To enable a structured analysis of real-world transfer problems, an industry-relevant, far-reaching systematization of typical machine tool use cases is developed. This provides the overview over different typical use case classes from the industrial use case perspective. Based on the derived transfer criteria of each use case class, a conceptual approach of concrete transfer methods is proposed.


Verlagsausgabe §
DOI: 10.5445/IR/1000168660
Veröffentlicht am 28.02.2024
Originalveröffentlichung
DOI: 10.1016/j.procir.2023.09.009
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2212-8271
KITopen-ID: 1000168660
Erschienen in Procedia CIRP
Verlag Elsevier
Band 120
Seiten 398 – 403
Bemerkung zur Veröffentlichung Part of special issue: 56th CIRP International Conference on Manufacturing Systems 2023
Schlagwörter Transfer learning, industrial transfer learning, knowledge transfer, transfer learning systemization, machine tools
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page