KIT | KIT-Bibliothek | Impressum | Datenschutz

GridSort: Image-based Optical Bulk Material Sorting Using Convolutional LSTMs

Reith-Braun, Marcel 1; Bauer, Albert; Staab, Maximilian 2; Pfaff, Florian ORCID iD icon 1; Maier, Georg; Gruna, Robin; Längle, Thomas; Beyerer, Jürgen; Kruggel-Emden, Harald; Hanebeck, Uwe D. 1
1 Institut für Anthropomatik und Robotik (IAR), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Optical sorters separate particles of different classes by first detecting them while they are transported, e.g., on a conveyor belt, and subsequently bursting out particles of undesired classes using compressed air nozzles. Currently, the most promising results are achieved by predictive tracking, a multitarget tracking approach based on extracted midpoints from area-scan camera images that analyzes the particles’ motion and activates the nozzles accordingly. However, predictive tracking requires expert knowledge for setup and preceding object detection. Moreover, particle shapes are only considered implicitly, and the need to solve an association problem rises the computational complexity of the algorithm. In this paper, we present GridSort, an image-based approach that forecasts the scene at the nozzle array using a convolutional long short-term memory neural network and subsequently extracts nozzle activations, thus circumventing the aforementioned weaknesses. We show how GridSort can be trained in an unsupervised fashion and evaluate it using a coupled discrete element–computational fluid dynamics simulation of an optical sorter. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168675
Veröffentlicht am 27.02.2024
Originalveröffentlichung
DOI: 10.1016/j.ifacol.2023.10.971
Scopus
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2023
Sprache Englisch
Identifikator ISSN: 2405-8963
KITopen-ID: 1000168675
Erschienen in IFAC-PapersOnLine
Verlag International Federation of Automatic Control (IFAC)
Band 56
Heft 2
Seiten 4620 – 4626
Bemerkung zur Veröffentlichung Part of special issue: 22nd IFAC World Congress, Yokohama, Japan, July 9-14, 2023
Schlagwörter Monitoring of product quality and control performance, Neural networks in process control, Machine learning methods and applications, Artificial intelligence in mining, minerals and metals, Process monitoring and fault diagnosis
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page