KIT | KIT-Bibliothek | Impressum | Datenschutz

Improved error bounds for approximations of high-frequency wave propagation in nonlinear dispersive media

Baumstark, Julian 1; Jahnke, Tobias 1
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

High-frequency wave propagation is often modelled by nonlinear Friedrichs systems where both the differential equation and the initial data contain the inverse of a small parameter ε, which causes oscillations with wavelengths proportional to $\varepsilon$ in time and space. A prominent example is the Maxwell–Lorentz system, which is a well-established model for the propagation of light in nonlinear media. In diffractive optics, such problems have to be solved on long time intervals with length proportional to $1/\varepsilon$. Approximating the solution of such a problem numerically with a standard method is hopeless, because traditional methods require an extremely fine resolution in time and space, which entails unacceptable computational costs. A possible alternative is to replace the original problem by a new system of PDEs which is more suitable for numerical computations but still yields a sufficiently accurate approximation. Such models are often based on the slowly varying envelope approximation or generalizations thereof. Results in the literature state that the error of the slowly varying envelope approximation is of $\cal{O}(\varepsilon)$. ... mehr


Volltext §
DOI: 10.5445/IR/1000168785
Veröffentlicht am 26.02.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsmonat/-jahr 02.2024
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000168785
Verlag Karlsruher Institut für Technologie (KIT)
Umfang 40 S.
Serie CRC 1173 Preprint ; 2024/5
Projektinformation SFB 1173/3 (DFG, DFG KOORD, SFB 1173/3)
Externe Relationen Siehe auch
Schlagwörter high-frequency wave propagation, nonlinear wave equation, Maxwell–Lorentz system, diffractive geometric optics, slowly varying envelope approximation, error bounds
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page