KIT | KIT-Bibliothek | Impressum | Datenschutz

The eROSITA Final Equatorial-Depth Survey (eFEDS): A machine learning approach to inferring galaxy cluster masses from eROSITA X-ray images

Krippendorf, Sven ; Baron Perez, Nicolas; Bulbul, Esra; Kara, Melih 1; Seppi, Riccardo; Comparat, Johan; Artis, Emmanuel; Bahar, Yunus Emre; Garrel, Christian; Ghirardini, Vittorio; Kluge, Matthias; Liu, Ang; Ramos-Ceja, Miriam E.; Sanders, Jeremy; Zhang, Xiaoyuan; Brüggen, Marcus; Grandis, Sebastian; Weller, Jochen
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract:

We have developed a neural network-based pipeline to estimate masses of galaxy clusters with a known redshift directly from photon
information in X-rays. Our neural networks were trained using supervised learning on simulations of eROSITA observations, focusing
on the Final Equatorial Depth Survey (eFEDS). We used convolutional neural networks that have been modified to include additional
information on the cluster, in particular, its redshift. In contrast to existing works, we utilized simulations that include background
and point sources to develop a tool that is directly applicable to observational eROSITA data for an extended mass range – from
group size halos to massive clusters with masses in between 10$^{13}$ M < M < 10$^{15}$ M . Using this method, we are able to provide, for
the first time, neural network mass estimations for the observed eFEDS cluster sample from Spectrum-Roentgen-Gamma/eROSITA
observations and we find a consistent performance with weak-lensing calibrated masses. In this measurement, we did not use weak-
lensing information and we only used previous cluster mass information, which was used to calibrate the cluster properties in the
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168862
Veröffentlicht am 29.02.2024
Originalveröffentlichung
DOI: 10.1051/0004-6361/202346826
Scopus
Zitationen: 2
Web of Science
Zitationen: 2
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 02.2024
Sprache Englisch
Identifikator ISSN: 0004-6361, 1432-0746
KITopen-ID: 1000168862
Erschienen in Astronomy and Astrophysics
Verlag EDP Sciences
Band 682
Seiten A132
Vorab online veröffentlicht am 13.02.2024
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page