KIT | KIT-Bibliothek | Impressum | Datenschutz

Classification of the machine state in turning processes by using the acoustic emission

Diaz Ocampo, Daniel ORCID iD icon 1; Aubart, Daniel 2; González, Germán 2; Zanger, Frederik ORCID iD icon 2; Heizmann, Michael 1
1 Institut für Industrielle Informationstechnik (IIIT), Karlsruher Institut für Technologie (KIT)
2 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract:

Processing digital information stands as a crucial foundation of Industry 4.0, facilitating a spectrum of activities from monitoring processes to their understanding and optimization. The application of data processing techniques, including feature extraction and classification, coupled with the identification of the most suitable features for specific purposes, continues to pose a significant challenge in the manufacturing sector. This research investigates the suitability of classification methods for machine and tool state classification by employing acoustic emission (AE) sensors during the dry turning of Ti6Al4V. Features such as quantiles, Fourier coefficients, and mel-frequency cepstral coefficients are extracted from the AE signals to facilitate classification. From this features the 20 best are selected for the classification to reduce the dimension of the feature space and redundancy. Algorithms including decision tree, k-nearest-neighbors (KNN), and quadratic discriminant analysis (QDA) are tested for the classification of machine states. Of these, QDA exhibits the highest accuracy at 98.6 %. Nonetheless, an examination of the confusion matrix reveals that certain classes, influenced by imbalanced training data, exhibit a lower prediction accuracy. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000168975
Veröffentlicht am 01.03.2024
Originalveröffentlichung
DOI: 10.1007/s11740-024-01266-2
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industrielle Informationstechnik (IIIT)
Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 0944-6524, 1863-7353
KITopen-ID: 1000168975
Erschienen in Production Engineering
Verlag Wissenschaftliche Gesellschaft für Produktionstechnik e.V. (WGP)
Band 18
Seiten 289–297
Vorab online veröffentlicht am 29.02.2024
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page