KIT | KIT-Bibliothek | Impressum | Datenschutz

Informed machine learning for cardiomegaly detection in chest X-rays: a comparative study

Hasse, Felix 1; Leiser, Florian ORCID iD icon 1; Sunyaev, Ali 1
1 Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB), Karlsruher Institut für Technologie (KIT)

Abstract:

Recently, computer-aided disease detection from chest radiographs made considerable progress by using convolutional neural networks but issues like insufficient data quality or data availability remain. Informed machine learning (IML) combines domain knowledge and data-driven approaches and has been shown to improve results in many applications. However, there is limited research comparing and combining multiple IML approaches. This paper tackles this issue by implementing, combining, and evaluating three IML approaches for cardiomegaly detection. We find that curriculum learning and cropping images to regions of interest can improve prediction performance. With these results, we provide a reference for both implementing and evaluating multiple IML approaches as well as demonstrating methods to combine IML approaches.


Postprint §
DOI: 10.5445/IR/1000169151
Veröffentlicht am 08.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000169151
Erschienen in Proceedings of the 21st IEEE International Symposium on Biomedical Imaging (ISBI 2024)
Veranstaltung 21st IEEE International Symposium on Biomedical Imaging (ISBI 2024), Athen, Griechenland, 27.05.2024 – 30.05.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Bemerkung zur Veröffentlichung in press
Schlagwörter informed machine learning, cardiomegaly, CheXpert, curriculum learning
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page