KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimizing AutoML for Tiny Edge Systems: A Baldwin-effect Inspired Genetic Algorithm

Huang, Yiran ORCID iD icon 1; Zhou, Yexu 1; Zhao, Haibin ORCID iD icon 1; Riedel, Till ORCID iD icon 1; Beigl, Michael ORCID iD icon 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract:

Tiny edge systems used in IoT devices, wearables or smart textiles are characterized by the need of processing complex sensor data streams under various device constraints. Due to the high number of constraints and the complexity of the optimization of the hyper-parameter space for machine learning based processing, genetic algorithms (GAs) seem to be a perfect fit to enable AutoML for those embedded devices. However, due to aspects such as the high interdependence between optimization parameters, the simultaneous existence of multiple conflicting objectives and complex effects of embedded feature engineering, we made the experience that GA approaches fail to converge within this high dimensional design space. We introduce a novel Genetic Algorithm (GA) customized for AutoML tasks, addressing the unique challenges posed by highly embedded machine learning domains. The proposed approach addresses parameter interdependencies through utilizing the Baldwin-effect in biological evolution, enhances resource utilization by early elimination of less promising individuals, and augments the insufficient capabilities of existing machine learning features via the integration of carefully designed neural network features. ... mehr


Postprint §
DOI: 10.5445/IR/1000169355
Veröffentlicht am 26.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 11.03.2024
Sprache Englisch
Identifikator KITopen-ID: 1000169355
Erschienen in 22nd IEEE International Conference on Pervasive Computing and Communicaitons (PerCom 2024)
Veranstaltung 22nd IEEE International Conference on Pervasive Computing and Communications (PerCom 2024), Biarritz, Frankreich, 11.03.2024 – 15.03.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Schlagwörter wearable human activity recognition, genetic algorithm, Baldwin effect
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page