KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing Efficiency in HAR Models: NAS Meets Pruning

Zhou, Yexu 1; King, Tobias 1; Huang, Yiran ORCID iD icon 1; Zhao, Haibin ORCID iD icon 1; Riedel, Till ORCID iD icon 1; Röddiger, Tobias ORCID iD icon 1; Beigl, Michael ORCID iD icon 1
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Real-time monitoring of human activities using wearable devices often requires the deployment of machine learning models on resource-constrained edge devices. State-of- the-art Human Activity Recognition models suffer from excessive size and complexity. Furthermore, our systematic analysis reveals that even worse, the computational cost and model size of most SOTA HAR models escalate significantly with increasing sensor channels. With advances in sensor technology that make it easier to scale sensor deployments that capture human activities, ad- dressing this challenge becomes critical for practical applicability. In this work, we propose an integrated neural architecture search framework to further lighten HAR models. The proposed framework simultaneously selects and reduces the number of sensor channels, prunes filters, and decreases the temporal dimensions while training the model on optimized hardware. This results in smaller and less complex models. Experiments on three HAR datasets demonstrate that our framework outperforms two state-of-the-art pruning methods in reducing model size and com- plexity, while achieving superior performance. ... mehr


Postprint §
DOI: 10.5445/IR/1000169356
Veröffentlicht am 26.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 11.03.2024
Sprache Englisch
Identifikator KITopen-ID: 1000169356
Erschienen in 22nd IEEE International Conference on Pervasive Computing and Communications (PerCom 2024)
Veranstaltung 22nd IEEE International Conference on Pervasive Computing and Communications (PerCom 2024), Biarritz, Frankreich, 11.03.2024 – 15.03.2024
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Bemerkung zur Veröffentlichung in press
Schlagwörter human activity recognition, automated machine learning, hardware-aware neural architecture search
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page