KIT | KIT-Bibliothek | Impressum | Datenschutz

Implementation of Machine Learning Models for Transmission Grid Monitoring and Blackout Prevention

Gemeda, Dejenie Birile ORCID iD icon 1
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Sustainable energy is one of the most important systems in modern society. To achieve the sustainable energy provision goal, Ethiopia has made significant investments in renewable energy resources in the last decades, resulting in a substantial increase in power generation. However, the growing demand for power consumption and uneven spatial distribution of generation and consumption centers have caused electrical network overloads and frequent power outages. These local outages can potentially escalate into widespread blackouts across the country. Solutions for this may be upgrading and construction of new lines, which require substantial investments, and are challenging for a developing economy in addition to ongoing big generation projects. An alternative approach involves optimizing the use of existing transmission lines and infrastructure through the implementation of real-time monitoring systems. This dissertation introduces a real-time current carrying capacity (or ampacity) monitoring known as dynamic line rating (DLR). DLR involves continuously monitoring overhead transmission lines (OHTLs) by taking into account surrounding weather conditions. ... mehr


Volltext §
DOI: 10.5445/IR/1000169464
Veröffentlicht am 21.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Hochschulschrift
Publikationsdatum 21.03.2024
Sprache Englisch
Identifikator KITopen-ID: 1000169464
Verlag Karlsruher Institut für Technologie (KIT)
Umfang xviii, 209 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Elektrotechnik und Informationstechnik (ETIT)
Institut Institut für Technik der Informationsverarbeitung (ITIV)
Prüfungsdatum 12.03.2024
Schlagwörter Dynamic line rating, machine learning, frequency deviation prediction, blackouts, congestion monitoring, wireless sensor network.
Referent/Betreuer Stork, Wilhelm
Fante, Kinde Anlay
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page