KIT | KIT-Bibliothek | Impressum | Datenschutz

Multi-component electro-hydro-thermodynamic model with phase-field method. I. Dielectric

Zhang, Haodong 1; Wang, Fei ORCID iD icon 1; Nestler, Britta 2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract:

We derive a multi-component electro-hydro-thermodynamic (EHTD) model for both leaky and
perfect dielectric materials via the principle of energy dissipation. Differing from previous
electro-hydrodynamic (EHD) models focusing on fluid mechanics, the electrochemical potential
expression is revised and the electric field related term is added to the mass and momentum
conservation equations. Resulting from this new correction, we obtain a generalized electro-
hydro-thermodynamic stress tensor including the effect of Kortweg and Maxwell stresses. We
observe the magnificent impact of the electric field on the thermodynamic equilibrium of the
system in two aspects: (i) phase diagram modified by the electric field; (ii) electric field induced
surface tension decrease/increase. In addition, the proposed model is validated and shows well
conformity with previous analytical solutions in literature. As exemplary applications, we perform
phase-field simulations to study the ternary droplet coalescence and spinodal decomposition
and observe several typical morphological transformations, such as satellite drop formation and
Quincke rotation.


Verlagsausgabe §
DOI: 10.5445/IR/1000169524
Veröffentlicht am 09.04.2024
Originalveröffentlichung
DOI: 10.1016/j.jcp.2024.112907
Scopus
Zitationen: 6
Web of Science
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 15.05.2024
Sprache Englisch
Identifikator ISSN: 0021-9991, 1090-2716
KITopen-ID: 1000169524
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Journal of Computational Physics
Verlag Elsevier
Band 505
Seiten 112907
Vorab online veröffentlicht am 07.03.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page