KIT | KIT-Bibliothek | Impressum | Datenschutz

Temporal Super-Resolution, Ground Adjustment, and Advection Correction of Radar Rainfall Using 3-D-Convolutional Neural Networks

Polz, Julius ORCID iD icon 1; Glawion, Luca 2; Gebisso, Hiob; Altenstrasser, Lukas; Graf, Maximilian ORCID iD icon 1; Kunstmann, Harald 1; Vogl, Stefanie; Chwala, Christian ORCID iD icon 1
1 Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:

Weather radars are highly sophisticated tools for quantitative precipitation estimation (QPE) and provide observations with unmatched spatial representativeness. However,
their indirect measurement of precipitation high above ground leads to strong systematic errors compared to direct rain gauge measurements. Additionally, the temporal undersampling from 5-min instantaneous radar measurements requires advection correction. We present ResRadNet, a 3-D-convolutional residual neural network approach, to reduce these errors and, at the same time, increase the temporal resolution of the radar rainfall fields by a 5-min short-range prediction of 1-min time-steps. The network is trained to process spatiotemporal sequences of radar rainfall estimates from a composite product derived from 17 C-band weather radars in Germany. In contrast to previous approaches, we present a method that emphasizes the generation of spatiotemporally consistent and advection-corrected country-
wide rainfall maps. Our approach significantly increased the Pearson correlation coefficient (PCC) of the radar product (from 0.63 to 0.74) and decreased the root mean squared error (mse) by 22% when compared to 247 rain gauges at a 5-min resolution. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000169549
Veröffentlicht am 08.04.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung – Atmosphärische Umweltforschung (IMK-IFU)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 29.02.2024
Sprache Englisch
Identifikator ISSN: 0196-2892, 1558-0644
KITopen-ID: 1000169549
HGF-Programm 12.11.33 (POF IV, LK 01) Regional Climate and Hydrological Cycle
Erschienen in IEEE Transactions on Geoscience and Remote Sensing
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 62
Seiten Art.-Nr.: 5103710
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page