KIT | KIT-Bibliothek | Impressum | Datenschutz

A case study of checking national household travel survey data with machine learning

Ecke, Lisa ORCID iD icon 1; Magdolen, Miriam ORCID iD icon 1; Jaquart, Sina 1; Andre, Robin 1; Vortisch, Peter 1
1 Institut für Verkehrswesen (IFV), Karlsruher Institut für Technologie (KIT)

Abstract:

In recent years, machine learning techniques have been increasingly tested and applied to physically collected data to optimize the processes. In this paper, machine learning is used to check travel survey data of the German Mobility Panel (MOP). In the MOP, verified and raw data have been available for several decades, on which algorithms can learn the practices of human checking routines. By using machine learning, the algorithm is expected to learn the checking patterns from the past and thus support the data checking of new datasets. To this aim, several algorithms are applied and tested. The presented model framework supports the identification of blatant deficits in the reports at the individual and trip levels. The neural network (NN) shows the most promising results as it decreases the number of data samples checked. The checking effort can be reduced by 20.4 % at the individual trip level. This work shows that machine learning can support the data checking process in the MOP at various levels, thus leading to significant time reduction.


Verlagsausgabe §
DOI: 10.5445/IR/1000169572
Veröffentlicht am 25.03.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Verkehrswesen (IFV)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 03.2024
Sprache Englisch
Identifikator ISSN: 2590-1982
KITopen-ID: 1000169572
Erschienen in Transportation Research Interdisciplinary Perspectives
Verlag Elsevier
Band 24
Seiten Art.-Nr.: 101078
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Vorab online veröffentlicht am 23.03.2024
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page