KIT | KIT-Bibliothek | Impressum | Datenschutz

Tracks of negative upper-tropospheric PV anomalies (PVAs$^{-}$) over the Northern Hemisphere in ERA5 reanalysis (1979-2021)

Hauser, Seraphine ORCID iD icon 1; Teubler, Franziska; Riemer, Michael; Knippertz, Peter ORCID iD icon 1; Grams, Christian M. 1
1 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This archive contains identified negative, upper-tropospheric PV anomalies (short: PVAs$^{-}$) and their tracks for the period 1979-2021 over the Northern Hemisphere based on ERA5 reanalysis data and represents the basis for recent publications on atmospheric blocking dynamics (e.g., Oertel et al., 2023; Hauser et al., 2023; Wenta et al., 2024; Hauser et al., 2024). Details on the method to identify and track PVAs- are provided in Hauser et al. (2024).

References:
Hauser, S., Teubler, F., Riemer, M., Knippertz, P., and Grams, C. M. (2023): Towards a holistic understanding of blocked regime dynamics through a combination of complementary diagnostic perspectives, Weather and Climate Dynamics, 4, 399–425, https://doi.org/10.5194/wcd-4-399-2023

Hauser, S., Teubler, F., Riemer, M., Knippertz, P., and Grams, C. M. (2024): Life cycle dynamics of Greenland blocking from a potential vorticity perspective, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2945.

Oertel, A., Pickl, M., Quinting, J. F., Hauser, S., Wandel, J., Magnusson, L., Balmaseda, M. Vitart, F. Grams, C. M. (2023): Everything Hits at Once: How Remote Rainfall Matters for the Prediction of the 2021 North American Heat Wave. ... mehr


Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Publikationstyp Forschungsdaten
Publikationsdatum 11.04.2024
Erstellungsdatum 01.01.2022 - 31.12.2022
Identifikator DOI: 10.35097/nncxPGLAaaDgVKIW
KITopen-ID: 1000169838
Lizenz Creative Commons Namensnennung – Nicht kommerziell – Keine Bearbeitungen 4.0 International
Vorab online veröffentlicht am 09.04.2024
Liesmich

The identification and tracking of PVAs$^{-}$ is based on ERA5 reanalysis data on model levels from the European Centre for Medium-Range Weather Forecasts (ECMWF) with a horizontal resolution of 0.5° and a temporal resolution of 3 hours (Hersbach et al., 2020). The following data covering the period 1979 to 2021 are stored in this archive:

(1) Fields of upper-tropospheric PV anomalies: A vertical, weighted average is performed based on model level ERA5 data between 500 and 150hPa. Anomalies are calculated based on a 30-day centered running-mean climatology (1979-2021). This variable (vertically-averaged PV anomaly; ‘VAPVA’; in PV Units) is stored in the netCDF files in the archive.

(2) Identified negative, upper-tropospheric PV anomaly objects: Due to the interest in their link to atmospheric blocking, negative anomalies as 2D objects (PVAs$^{-}$) are identified using a percentile threshold (described in detail in Hauser et al., 2024). These objects are stored along the fields of upper-tropospheric PV anomalies in the netCDF files in the variable ‘labels’. Note that the label 0 indicates no presence of a PVA$^{-}$ and the labels >0 represent the track ID (see next bullet point).

(3) Tracks of PVAs$^{-}$: The tracking of PVAs$^{-}$ is based on contour overlap and considers a handling of splitting and merging events (see Hauser et al., 2023 for details and a schematic figure on the tracking algorithm). Each txt-files in this archive represents the track information for one year. The structure of the file is based on time, i.e. for each point in time it provides information on which track ID is active, and whether it is a new track, the end of a track or a continuation of a track. There is also information on splitting and merging between the previous and current time step. Detailed information on how to read these files is given in the README.txt file in the same archive.

(4) Helpful python functions to handle the PVA$^{-}$ tracks: In a jupyter notebook (demonstration.ipynb, demonstration.pdf), we provide some basic functions and an example on how to work with the tracking data, e.g. how to retrieve the lifetime of a PVA$^{-}$ track ID and how to calculate basic characteristics such as center of mass (latitude-longitude coordinates), amplitude, size, etc. along the track.

References:
Hauser, S., Teubler, F., Riemer, M., Knippertz, P., and Grams, C. M. (2024): Life cycle dynamics of Greenland blocking from a potential vorticity perspective, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2945.

Hersbach, H., Bell, B., Berrisford, P., et al (2020): The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society; 146: 1999–2049. https://doi.org/10.1002/qj.3803.

Art der Forschungsdaten Dataset
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page