KIT | KIT-Bibliothek | Impressum | Datenschutz

Using multi-scale features for the 3D semantic labelling of airborne laser scanning data

Blomley, R. 1; Weinmann, M. 1
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we present a novel framework for the semantic labeling of airborne laser scanning data on a per-point basis. Our framework uses collections of spherical and cylindrical neighborhoods for deriving a multi-scale representation for each point of the point cloud. Additionally, spatial bins are used to approximate the topography of the considered scene and thus obtain normalized heights. As the derived features are related with different units and a different range of values, they are first normalized and then provided as input to a standard Random Forest classifier. To demonstrate the performance of our framework, we present the results achieved on two commonly used benchmark datasets, namely the Vaihingen Dataset and the GML Dataset A, and we compare the results to the ones presented in related investigations. The derived results clearly reveal that our framework excells in classifying the different classes in terms of pointwise classification and thus also represents a significant achievement for a subsequent spatial regularization.


Verlagsausgabe §
DOI: 10.5445/IR/1000169968
Veröffentlicht am 16.04.2024
Originalveröffentlichung
DOI: 10.5194/isprs-annals-IV-2-W4-43-2017
Scopus
Zitationen: 30
Dimensions
Zitationen: 30
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2017
Sprache Englisch
Identifikator ISSN: 2194-9050
KITopen-ID: 1000169968
Erschienen in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Verlag Copernicus Publications
Band IV-2/W4
Seiten 43–50
Vorab online veröffentlicht am 12.09.2017
Schlagwörter 3D Semantic Labeling, Airborne Laser Scanning, Point Cloud, Multi-Scale Features, Classification
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page